Test 3 Numerical Mathematics 2
 January, 2020

Duration: 1.0 hour.

In front of the questions one finds the points. The sum of the points plus 1 gives the end mark for this test.

1. [2] Given the inner product $(f, g)=\int_{-\infty}^{\infty} \exp \left(-x^{2}\right) f(x) g(x) d x$, give the associated first three orthogonal polynomials; so upto degree 2. You do not need to normalize the polynomials.
2. (a) [1.5] For polynomial interpolation of functions it holds that $E_{n, \infty} \leq\left(1+\Lambda_{n}(X)\right) E_{n}^{*}$, where $E_{n, \infty}$ is the interpolation error and E_{n}^{*} is the minimax error, i.e. the error one obtains for the best polynomial approximation of the function at hand. Furthermore, $\Lambda_{n}(X)$ is the Lebesgue constant. Derive this relation.
(b) [1] Give the expression for the interpolation error and explain that taking the zeros of a Chebyshev polynomial as interpolation points is a reasonable choice.
3. Suppose the least squares approximation of a function $f(x)$ is given by $\sum_{i=0}^{\infty} \alpha_{i} \phi_{i}(x)$ where $\phi_{i}(x)$ are orthogonal polynomials with respect to some innerproduct $(f, g)=$ $\int_{a}^{b} f(x) g(x) d x$.
(a) [1.5] Determine α_{i}.
(b) $[0.5]$ Consider the partial sum of the approximation of $f: F_{n}(x)=\sum_{i=0}^{n} \alpha_{i} \phi_{i}(x)$. Explain the difference between convergence in the norm associated to the above inner product and pointwise convergence.
(c) $[0.5]$ Suppose $F_{n}(x)$ defined in the previous part converges pointwise to $f(x)$. Will the derivative of $F_{n}(x)$ also converge pointwise to the derivative of $f(x)$?
4. [2] Explain how orthogonal polynomials can be used to construct a method to solve the initial value problem

$$
\frac{d y}{d t}=f(t, y), \quad \text { with } y(0)=y_{0}
$$

Test 3- 2020

$$
\begin{aligned}
& (f, g)=\int_{\exp \left(-x^{2}\right) f g d x \quad \varphi_{0} \equiv 1}
\end{aligned}
$$

$$
\begin{aligned}
& \varphi_{2}(x)=x^{2}-\alpha \varphi_{0}-\beta \varphi_{1}(x) \\
& \left(\varphi_{0}, \varphi_{2}\right)=0 \cdot\left(\varphi_{0}, x^{2}\right)-\alpha\left(\varphi_{0}, \varphi_{0}\right)-\beta\left(\varphi_{0} \varphi_{1}\right)=0 \\
& \alpha=\frac{\left(\varphi_{0}, x^{2}\right)}{\left(\varphi_{0}, \varphi_{0}\right)}=\frac{1}{4}< \\
& \left.\varphi_{0}+x \varphi_{0}, x^{2}\right)=\int_{i}^{\infty} x^{2} \exp \left(-x^{2}\right) d x=-\frac{\varphi_{0}}{\left(\varphi_{0}\right.} \int_{-\infty}^{\infty} x d \exp \left(-x^{2}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{r}
\left(\varphi_{1}, \varphi_{2}\right)=0 \\
\left(\underset{\sim}{x}, x^{2}\right)-\alpha\left(\frac{x}{0}, 1\right)-\beta(x, x)=0 \rightarrow \beta=0 \quad Q_{2}=x^{2}-\frac{1}{1}
\end{array}
\end{aligned}
$$

$$
f(x)-p_{n}(x)=\underbrace{\left(x-x_{0}\right)\left(x-x_{1}\right) \cdots\left(x-x_{n}\right)} \frac{\left.f^{(n+1)} \xi\right)}{(n+1)!}
$$

becomes a scaled Thebes sher poll.
if $x_{0} \ldots x_{n}$ ane zeno's of the tne11 $T_{n+1}(x)$
$T_{n+1}(x)$ satisty minimus property: all extrema cone equal $T_{n+1}(\cos \theta)=\cos ((n+1) \theta)$ in magnitude and alternating

$$
\operatorname{mim}_{\alpha k}\left\|\mid f(x)-\sum_{i=0}^{4} \alpha_{i} \varphi_{i}(x)\right\|_{2}
$$

$\min _{x=k}\left(f(x)-\sum, f(x)-\Sigma\right)$

$$
\begin{aligned}
& \left.\frac{\partial}{\partial \alpha_{k}}\langle, \quad)=0 \rightarrow\left(-\varphi_{k}(x), f(x)-\sum_{i=0}^{n} a_{i} \varphi_{i}(x)\right)\right)=0 \\
& \alpha_{k}\left(\varphi_{k}, \varphi_{k}\right)^{i=0}\left(\varphi_{k}, f\right) \rightarrow \alpha_{k}=\frac{\left(\varphi_{k}, \rho^{\prime}\right)}{\left(\varphi_{k}, \varphi_{k}\right)}
\end{aligned}
$$

$F_{n}(x)$
Pointwise curvergence: $F_{n}(x) \rightarrow F(x)$ for $n \rightarrow \infty$ for each x in $[a, b]$
converge in L_{L} norm: $\left\|F_{n}(x)-f(x)\right\|_{2} \rightarrow 0$ for $u \rightarrow \infty$
This is weaker than pointwise corrvegence $f(x)$ may have points which have clitterent values $f_{(t, i)}$ - from $f\left(x_{i}+\varepsilon\right)$

$F_{n}(x)$ is a least square appraxin using orth. polynomials

$$
F_{n}(x)=\sum_{i=0}^{n} \varphi_{i} \cdot \varphi_{i}(x)
$$

then it can converge in L_{2} normento functions with junes

$$
\begin{aligned}
& y^{\prime}=f(t, y) \\
& \int_{t_{n+1}}^{t_{n}} d t \\
& y\left(t_{n+1}\right)-y\left(t_{n}\right)=\frac{\int_{t_{n}}^{t_{n+1}} f(t, y(t)) d t}{A_{\text {ppol }} \text { Sunst method }}
\end{aligned}
$$

need Y at in Eerrolution pounts
These will approximater too \rightarrow RK methol

